Participatory budgeting for climate adaptation

Artboard 1.png

Climate change is a hot topic. As a result of climate change and increasing urbanisation, superfluous water is a major challenge for cities. Changes to the existing urban infrastructure will be needed to be able to manage the increased frequency and severity of extreme weather events. Therefore, climate adaptation is increasingly becoming priority on the municipal agenda. The ‘Deltaplan Ruimtelijke Adaptatie' obliges municipalities to perform stress tests to assess their resilience to climate change. Multiple stress tests that have been performed to date (eg. in Wageningen) show that indeed new integral approaches are needed to be able to manage the enormous amount of precipitation that will ravage our cities.

There is a multitude of measures available to improve the resilience of urban areas. Besides solutions such as increasing the sewerage capacity, constructing flood barriers or water-retaining structures and elevating the ground floor of buildings, some other measures resort to the way nature works itself. The so-called Nature-Based Solutions (NBS) are considered to be an essential addition to grey infrastructure. As discussed in our previous blog post on the co-benefits of the Urban Water Buffer in Spangen, NBS provide complementary benefits in addition to their primary function for water management. Many of these co-benefits concern the inhabitants as the actual end-users.

But how can we define the value different measures provide to the end-users and how can we involve inhabitants when planning for climate adaptation?

 

Defining the value of water management solutions through participatory budgeting

Together with researchers from the TU Delft and the Municipality of The Hague, we are conducting a research into the value inhabitants derive from various measures (including both grey infrastructure and nature-based solutions) to prevent superfluous water problems in a neighbourhood in The Hague.

For this research, we make use of a participatory budgeting approach called the Participatory Budget Game (PBG). In this method for participatory value evaluation, developed by Niek Mouter (TU Delft), Paul Koster (VU Amsterdam) and Thijs Dekkers (Institute for Transport Studies Leeds), inhabitants are asked to divide a limited budget between a set of possible climate adaptation measures. In this way, inhabitants take the role of public authority, as they are asked to assign the budget in the way they feel the municipality should invest the public budget for climate adaptation.

The underlying mechanism of the PBG is that inhabitants are forced to make trade-offs between characteristics (attributes) of the potential measures. For example, if a measure will result in more green space, it might likely come at the cost of parking places. The effect of a measure on each of the eight attributes is presented to the respondents. Since not all measures can be realised within the budget, the respondents are forced to make a decision based on the scores of the measures on each attribute. Using econometric choice-modelling techniques the relative value of the attributes can be derived from the combination of projects that respondents select. Besides these quantitative results, qualitative insights in underlying motivations of respondents are generated through a few follow-up questions after completion of the PBG.

The PBG was developed as an alternative to other participatory research methods, which struggle with problems like self-selection of respondents and time-consuming procedures. Since the PBG can be completed online in only 20-30 minutes, many more residents can participate and a better representation of the population can be achieved.

What can be done with the results?

Even without performing complex econometric modelling, basic descriptive results of the selected measures provide valuable knowledge for a public authority on the measures preferred by the inhabitants.

Furthermore, the results of the econometric modelling provide sophisticated insights into the underlying motivations of inhabitants to choose for a specific measure. These motivations are based on the effect of a measure on the attributes, such as extra green areas, participation by residents and water re-use. It allows for a comparison between the importance of each attribute for the inhabitants. Like how much parking spaces inhabitants would be willing to give up, in exchange for an additional 40m2 of green space.

These outcomes may not directly result in a design for the district, but provide focus points for vision and plan development. The role of the inhabitants is not to give their opinion on different design possibilities but to contribute to the drafting of a program of requirements. The PBG thus prevents NIMBY discussions, making it possible to include the collective belief of inhabitants in the link between municipal visions and project-specific implementation plans. A collective belief that is not just based on the opinion of a few participants joining a session in a town-hall, but based on a significant representation of the population.

 

Do you want to know more about the application of Participatory Budgeting approach in the planning and development of climate adaptation projects?

Defining co-benefits of circular water management in Spangen

IMG_8101.JPG

Stakeholders Workshop Urban Waterbuffer Spangen

On the 1st of March, Field Factors, supported by IRSA, hosted an interactive and inspiring Stakeholder Workshop to assess the effectiveness of the Urban Water Buffer project in Spangen, Rotterdam. 

The Urban Water Buffer is a nature based solution to collect, filter, store and re-use stormwater for the irrigation of the sports field in the Sparta Stadium. 

The workshop is part of the H2020-project NAIAD, in which the insurance value of ecosystems for water related risk mitigation is researched by a European consortium, through bridging science and practice in nine demo cases. 

The Urban Water Buffer in Rotterdam is a particularly interesting case study, since the NBS will actually be implemented in the coming months. This provides NAIAD researchers with a valuable opportunity to assess the effectiveness of the NBS through a comparison of the current situation with the situation after realisation of the UWB. The Stakeholders Workshop aimed at defining indicators for the effectiveness of the Urban Water Buffer on which this comparison can be based. 

Identification of Co-Benefits of the Urban Water Buffer 

The core in the workshop was to define the direct and indirect benefits of the Urban Water Buffer and the ecosystem services it provides. Together with a wide variety of stakeholders, such as the municipality of Rotterdam, the Waterboard Delfland, the water utility Evides, Rijkswaterstaat, KWR Water, engineering company Wareco, VPDelta and NAIAD partner Deltares, no less than eleven co-benefits of the Urban Water Buffer have been identified. Examples of these co-benefits include the re-use of stormwater, spatial quality enhancement, increase of water-awareness among citizens,  provision of cooling during hot days, increase of urban green, improve water quality, reduction of damage to building and infrastructure, etc. Based on an individual ranking of the co-benefits by each participant, three benefits were selected for further analysis in the second part of the workshop.

 

  • Spatial quality enhancement

  • Improve water quality 

  • Increase water awareness

Actions and Indicators

All stakeholders acknowledge that in order to make the implementation of the Urban Water Buffer project successful, not only the technical aspects of the solution should be considered, but the “soft” co-benefits should be enforced as well. It was great to see that in the second part of the workshop, many implementable actions were defined that can support the exploitation of the expected co-benefits. For each of these actions, indicators were set on which the effectiveness of these actions can be assessed.

The results of the workshop are used for the economic assessment of the UWB as a risk mitigation measure within NAIAD. Additionally, the results are used in the implementation guide of the Urban Waterbuffer in order to support the upscaling of this nature based solution.  

De straat als integrale ontwerpopgave

Render streetdrainv3.jpg

Wat zal er met de straat gebeuren wanneer de steden blijven groeien, het meer gaat regenen, het warmer wordt en er meer goederen vervoerd moeten worden? Er worden nieuwe eisen aan het functioneren en daarmee aan de inrichting van onze straten gesteld, waarin verduurzaming, vergroening en efficiëntie voorop staan. Onze werkzaamheden zijn er op gericht concrete oplossingen te geven om deze processtappen te vereenvoudigen en in samenwerking met opdrachtgevers richting te geven aan de transitie naar een circulaire en leefbare omgeving.

Verdichting van bestaand stedelijk gebied is een belangrijke ruimtelijke opgave. In de dichtbebouwde stad waar de openbare ruimte beperkt is is het noodzakelijk om zowel maatschappelijke als logistieke functies integraal mee te nemen in het functionele programma van binnenstedelijke herstructurering.

 

De gedeelde uitdaging

De straat: de openbare doorgang in de bebouwde omgeving. De grens, maar ook de verbinding tussen gebouwen. En dé plek voor publieke interactie: een plek waarop mensen zich kunnen verzamelen, elkaar ontmoeten en zich door de stad verplaatsen. De straat kan eenvoudig gezien worden als een vlakke strook waar het doorgaande verkeer plaatsvindt, vaak bedekt met harde robuuste materialen zoals asfalt, keisteen of baksteen. Maar in de meeste gevallen is de straat ingebed met tramrails, kabels, leidingen en andere installaties om water, energie, groen en logistieke functies te accommoderen. Hiermee moet de straat zorgen voor het goed functioneren van een levendige en aantrekkelijke leefomgeving.

De huidige statische inrichting van de straat sluit steeds vaker niet aan op het dynamische en veranderende gebruik. Er is op diverse plekken in de stad veel ruimte gereserveerd voor verkeer, wat ten koste gaat van de ruimte voor voetgangers; de infrastructuur wordt vaak eenzijdig gebruikt, terwijl het aantal voetgangers op die locaties de afgelopen decennia meestal flink is gestegen. Er is op veel plekken onvoldoende ruimte voor auto- en fietsparkeren, een vrije trambaan, een vrij fietspad, ondergrondse afvalcontainers, bomen, terrassen en winkeluitstallingen, om maar een aantal voorzieningen te noemen. Het tegemoet komen aan de eisen die horen bij een goede doorstroming van het autoverkeer, het openbaar vervoer en de afwatering, gaat in veel straten vaak ten koste van de toegankelijkheid voor langzaam verkeer en de verblijfskwaliteit.

180216 Bluebloqs in context_Artboard 4 copy.jpg

De straat van de toekomst

Onze visie op de straat van de toekomst beschrijft een meer efficiënte en dynamische inrichting, waarbij volumes, frequentie en transportmiddelen van stromen - mensen, goederen, water en energie - worden aangepast aan de grootte en de morfologie van de stad, bovengronds en ondergronds, ondersteund door een dynamisch netwerk. 

Door Intelligent Transportation Systems (ITS) te integreren, kan de capaciteit van het bestaande stedelijke netwerk worden vergroot. Functies kunnen worden opgenomen door een flexibele en dynamische infrastructuur te creëren.

De straat functioneert als flexibele ruimte, waarbij het gebruik overdag en 's nachts verschilt. Dynamische laad- en losplekken veranderen op andere momenten in fietsparkeerplaatsen of terras. Middels slimme vakken in de bestrating zijn containers/pick-up & drop-off plekken herkenbaar in het netwerk, waardoor autonoom laden en lossen mogelijk wordt. Wij hebben dit thema uitgewerkt in het project Stadslogistiek Op Maat.

De-markering, borden en verkeerslichten kunnen dan uit het straatbeeld verdwijnen. De stedelijke infrastructuur wordt interactief, dynamisch en multifunctioneel. Een optimale mix tussen efficiëntie, veiligheid en leefbaarheid. Zelf-rijdende kleine auto’s & cargo-vans en concepten als ‘DaaS’ bieden de mogelijkheid om mobiliteit te delen, zodat er minder auto's en minder parkeerplaatsen nodig zijn. De resterende ruimte kan opnieuw worden ingedeeld, gericht op comfortabelere trottoirs, hemelwaterbeheer en groenvoorziening. Transport is een service geworden die de kosten van het bezitten van een auto grotendeels verminderen. 

Screen Shot 2018-02-27 at 16.18.54.png

Klimaatadaptief ontwerpen

Het regenwater wordt niet meer naar het riool afgevoerd. In de stad van de toekomst wordt het hemelwater op de straat vastgehouden en in de ondergrond opgeslagen voor hergebruik voor verschillende functies, zoals irrigatie, koeling en operationele processen. De daken van gebouwen en straten worden benut om hemelwater op te vangen en af te koppelen. Hiermee kan kostbaar drinkwater worden bespaard en wordt het waardevolle hemelwater volledig benut. Waterbedrijven, waterschappen, gemeentes en eindgebruikers werken nauw samen om het water zo efficient mogelijk te beheren en te hergebruiken. Stedelijk waterbeheer wordt hiermee decentraal en circulair.

Groen wordt teruggebracht in het straatbeeld. Door groenvakken te zien als stedelijke elementen en er functies aan te koppelen zoals verblijf, afwatering of verkeersvoorzieningen, maken we de stad groener, koeler en leefbaarder. De plantvakken zuiveren het hemelwater, wat weer teruggeleverd kan worden aan de stad. In Rotterdam geven we al invulling aan deze visie met de Urban Water Buffer.

Wij zien gezamenlijke uitdagingen voor de straat van de toekomst, zoals de energietransitie, inpassen van nieuwe en efficiënter beheren van oude kabels en leidingen, het terugwinnen van grondstoffen uit afvalwater. Onze werkzaamheden richten zich op concrete oplossingen bedenken en realiseren en samen met onze opdrachtgevers richting te geven aan de transitie naar een circulaire en leefbare stad. Wie doet er mee om met integrale oplossingen deze uitdagingen op te pakken? 

 

Rapid prototyping in our design process

IMG_0039_b.jpg
 

Rapid prototyping

Now that the realisation of the first full-scale pilot application of our Bluebloqs system in Spangen is coming up, we would like to give some insights in how we are able to reach this point in development. During the product design process, different aspects often need to be tested to find the best solution. This used to be a time consuming process where scale models or prototypes were all made by hand. Now, by having 3D printing technology integrated in our office, we have the ability to quickly make prototypes from models we make with 3D CAD software. Autodesk’s Fusion 360 works best for us: with one click the model is sent to one of our own 3D printers. We use the Ultimaker 2+ and the Builder Extreme 1500 for making physical models: from small to full-sized prototypes. This way we are able to test different working principles within a very small timeframe, helping us quickly iterate on technical ideas, make customisations in moulds and develop new products.

 

 

3D printing in infrastructure

For building full-scale models we use the Builder Extreme 1500, which has a build volume of 1100x850x550 mm: one of the largest FDM printers in the world! Using this unique feature we can make prototypes of large models of infrastructural components with high attention to detail.

Besides printing full scale prototypes of components for infrastructure application, we also use the Builder to quickly make concrete moulds. Using plastic instead of wood saves us a whole woodworking workshop and allows us to test more free-form shapes. Being able to quickly build and test detailed models is unique in designing infrastructural products.

For making small scale show models or to test working principles we use the Ultimaker 2+. The Ultimaker can produce these models at a very high resolution, very useful to simulate the behaviour (to some extend) of injection moulded plastic parts.

Although these printers appear to magically produce finished prototypes, there is a lot more to the performance and maintenance of these machines. Fortunately, we have Mirthe and Kasper, Industrial Designer and Mechanical Engineer, on board to keep our small workshop up and running. They keep on learning everyday about smart 3D modelling, print performance optimisation, rapid prototyping and smart manufacturing.

Do you want to see our machines running or explore options in combining rapid prototyping for mass customisation in your manufacturing process, please drop by!

Hope we can give you some inspiration.

 

Bluebloqs: full-scale working prototype

IMG_0492_b2-s.png
 

From concept to working system

This year we have committed ourselves to a big endeavour: to develop and test the first working prototype of our Bluebloqs rainwater harvesting system. Going from technical principles and concept sketches through extensive modelling, prototyping and testing to a full-scale working system! 

At The Green Village, an innovation test site in Delft, we have been able to implement and test the performance and mechanical properties of our system, including water flow, robustness, stability, assembly method and much more!

Rapid prototyping, rapid results

The first Bluebloqs operational prototype has been developed within a year, by deploying large-scale 3D-printing. Using Autodesk software, concepts were quickly modelled and tested on scale: the scale got larger as the design got more detailed. 

By installing the system ourselves on site, we could test first hand the assembly and installation principles: some assumptions failed as soon as we started! Contractor Van Gelder, who supported us on site by realising the excavations and piping work, provided us with practical insights to optimise the assembly and installation guidelines. 

Although the test site consists of 6 m2, we saw a lot of cubic meters of sand moving. The system performance and mechanical properties have been tested and validated for mechanical robustness and stability, water tightness of system connections, water flow rate through the system components. 

It has been very rewarding to finally see our system in operation last October. Using 3D printing allowed us to see our working product full-scale, test concepts and continuously iterate throughout the development process, before sending the design to the manufacturer for the production of the first batch of the Bluebloqs components.

We are looking forward to achieving our next big milestone: the realisation of the first full scale pilot application of Bluebloqs at the Sparta Stadion in Rotterdam, in March 2018. 

Stay tuned!

Insight into applications of the Urban Waterbuffer

170817 UWB_graphic_spangen-01.png

Water in the city: an integral task

Urban areas increasingly face flooding due to intense rainfall and water shortages caused by longer droughts. The current solutions are based on rapid discharge and supply, respectively. But these solutions are often expensive and unsustainable. Retention and infiltration in the city are necessary in order to absorb surpluses quickly, and retain rainwater for a longer time, allowing subsequent use.

Urban Waterbuffer: going deep

The space needed for water retention and infiltration in urban areas is typically limited. This results in conflicts with other uses of space, and in solutions that are expensive. With the Urban Waterbuffer (UWB) rainwater in urban areas can be purified and retained for a longer time, without obstructing other spatial functions. The Urban Waterbuffer uses deeper aquifers to infiltrate, store and extract rainwater through wells. The purpose of the projectUrban Waterbuffer research project is to explore whether this solution can make a significant positive contribution to preventing flooding and improving water supply in urban areas.